
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

1

An Evaluation of Fault Tolerant Web Service in

Mobile Cloud

Abarna.P1, Leena Mary.L2, Ravimaran.S3

Department of Computer Science & Engineering

M.A.M College of Engineering

Siruganur, Trichy, Tamil Nadu, India

Abstract

 In mobile cloud based services reliability for transaction and fault

tolerance are key issues. Web service-based transactional business

processes require a high degree of reliability to guarantee

consistent results. Since webservices are called by websites in

different platforms, client faults may occur randomly at any place

either due to node failure, incorrect input or any data loss

transmission etc. This is more prominent in mobile services

because of fewer resources. This leaves the data and consequently

the webservices in an unstable state. In case of failure, clients must

take necessary actions to leave the process in a globally-correct

state. Based on the Web Services Transactions specifications, a

framework for fault tolerance to the mobile web services is

proposed. A mechanism that combines exception handling and

transaction techniques are used to devise fault tolerance in web

service transaction. This framework provides fault tolerance to

mobile webservices when consumed by the relevant application.

Keywords: Web Services, Fault tolerance, Transactions, Mobile

cloud, Exceptions, Fault Handling, Recovery in web services

I.INTRODUCTION

Transactional workflow systems have been available for

long time. However, their elevated interoperability costs

have kept them limited to mission-critical enterprise

systems. Thanks to Service Oriented Computing and in

particular, Web services, the popularity of such systems

promises to increase in the near future: XML is now a

widely accepted standard to represent exchanged data,

applications can easily expose select business logic as Web

service operations, while the Internet provides an affordable

yet pervasive communication link.

Construction of fault handling logic is a time consuming and

error prone task, because constructs to handle the fault

tolerance are located at low syntax level.This makes it

difficult to develop, maintain and update both logic types.

Also the system enforces the execution of compensation

before terminating the whole process leading to unstable

termination of services as it is at the mercy of the designer.

Second is the assumption that every service in a

transactional web service is compensable, which under

practical circumstances is not possible as the compensation

is allowed only within a stipulated time with cost

constraints.Fail to guarantee the correctness of the fault

handling logic; hence the composite service terminates in an

inconsistent state. Autonomy of transactional web services

is neglected and as a result process consistency is violated

and whenever a fault occurs. The cost is also very high in

such a scenario.

A prototype implementation shows how this framework can

be integrated into existing services by introducing minimal

changes to their application code. The Web services targeted

by our study are commonly the result of existing application

business logic. As such, they generally access an underlying

database management system (DBMS) which, despite

providing local data consistency, is insufficient to guarantee

the integrity of the distributed business processes they

collaborate with.

In the presence of operational failures, they may loose all or

part of their state, leaving parts of the process in an

unknown status, which leads to process inconsistency.

Hence, our approach to fault tolerance is primarily interested

in allowing a running transactional process to resume

normal execution past the point of failure, instead of

resorting to complete rollback (i.e., backward recovery) or

to take all the necessary actions to reach an acceptable state.

RELATED WORKS

Though there has been an elaborate study about fault

tolerance there is no comprehensive study when it comes to

web services systems in combination with mobile cloud the

area seems to be vague with little research done in the

preceding years.

Tai et al., 2004 suggests how BPEL, WS-C, WS-AT and

WS-BA can be combined to provide coordinated Web

processes. Sauter and Melzer, 2005 compares capabilities of

BPEL vs. WS-BA, and advocates extending BPEL to

provide distributed coordination features. Tartanoglu et al.,

2003 also addresses service reliability using forward

recovery, but their Web service composition actions are

statically defined for every participant.

 Mikalsen et al in 2002 proposes a framework of action ports

(proxy services) that negotiate and enforce transactional

behaviour in existing services.

Rusinkiewicz and Sheth, 1995 (and earlier work) discusses

transactional workflows, their heterogeneous nature and the

need for failure and execution atomicity. Tang and

Veijalainen, 1995 introduces the concept of consistency

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

2

units (C-unit), transaction-style sections of a process that

enforce data integrity constraints across participants.

Redo Recovery after System Crashes [Lomet and Tuttle,

1995]. An installation graph can explain the order of log

writes to forward-recover the state of a database. Logical

Logging [Lomet et al., 1999] in Logical log operations

reduce the volume of log records.

Allows more generic logging schemas. Durable Scripts

Containing Database Transactions [Salzberg et al., 1996

says faults can be used to record and replay short ACID

transactions to restore an application’s state.

The Generic Log Service [Wirz and Nett, 1993] can be used

to log protocols represented by finite state machines. These

include transactional protocols such as 2PC. In his work

Transparent Recovery in Distributed Systems, Bacon, 1991

proposes that in order to avoid fault-tolerance logic in every

application, transparent recovery solutions can transform

non-resilient applications into resilient ones.

PROPOSED ARCHITECTURE

The paper proposes the FACTS framework that addresses

the above shortcomings for fault tolerant composition of

transactional web services. It is a hybrid fault tolerant

mechanism is used which combines exceptional handling

and transaction techniques to improve reliable composite

services.

There is a STTP (Service transfer based termination

protocol) that assists composite services to terminate in

consistent state whenever an unrepairable fault occurs. An

Event Condition Action [ECA] is adopted which has rules to

describe when and how to use exception handling. An

algorithm called taxonomy of transactional web services is

then used to verify the correctness of the fault handling

logic.The proposed architecture has the following

advantages, in that it terminates in consistent state in case of

a fault and also simplifies the development and maintenance

of fault tolerant web services composition.

The verification algorithm ensures that the composite

services end in a consistent state despite faults. The

framework is applicable to any web service execution

engine. In terms of reusability it can use both fault handling

and business logic and when it comes to portability it can

execute in any WS BPEL engine. And as for convenience it

frees service designers from simulations and tests. Also in

terms of economy cost constraints are taken into account

hence more profit oriented systems can be built.

Transactions have always relied on logging and Web

service-based transactions are no exception. While in

centralized transactional systems logging is used to enforce

data consistency, in distributed environments it can also help

to guarantee the consistent execution of distributed

protocols.

The importance of this role can be realized considering that

a distributed protocol for participants that cannot recover

from failures has the potential of leaving the system in an

incoherent state. By leveraging existing techniques, logging

provides a protocol event history that enables participant

recovery, allowing the protocol to be continued exactly at

the state it was interrupted by a failure. An Event Condition

Action [ECA] is adopted which has rules to describe when

and how to use exception handling.

Fig 1. Fault Tolerant Framework

Since conventional Web services rarely provide the

necessary fault-tolerance guarantees to take part in a

distributed transaction, the reasons for using logging are

twofold. This behaviour agrees with the open-nested

transaction model, in which the effects of sub transactions

are readily visible to others.

If this were not done, the concurrency penalty incurred by

conventional data isolation could not be tolerated by most

applications. The algorithm called taxonomy of

transactional web services is then used to verify the

correctness of the fault handling logic.

The Transactional WS composition problem has been

extensively treated in the literature by using a predefined

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

3

control structure such as workflows called Advanced

Transactional Models, which are based as follows:

A. Exception Handling and Transaction

A hybrid fault tolerant mechanism is used which combines

exceptional handling and transaction techniques to improve

reliable composite services. It employs 8 high level

exception handling techniques to repair faults during

execution of composite services. If there is no fault then the

execution continues.

In case of a fault there is a STTP (Service transfer based

termination protocol) that assists composite services to

terminate in consistent state whenever such an unrepairable

fault occurs .

B.WS BPEL designer

Here the business requirements are specified as processes.

Transactions have always relied on logging and Web

service-based transactions are no exception. While in

centralized transactional systems logging is used to enforce

data consistency, in distributed environments it can also help

to guarantee the consistent execution of distributed

protocols. The importance of this role can be realized

considering that a distributed protocol for participants that

cannot recover from failures has the potential of leaving the

system in an incoherent state. By leveraging existing

techniques, logging provides a protocol event history that

enables participant recovery, allowing the protocol to be

continued exactly at the state it was interrupted by a failure

C.Specification Module

An Event Condition Action [ECA] is adopted which has

rules to describe when and how to use exception handling.

Since conventional Web services rarely provide the

necessary fault-tolerance guarantees to take part in a

distributed transaction, the reasons for using logging are

twofold: The need to deliver application state recovery,

represented in terms of vital system variables (which

collectively form the coordination context), and the need to

provide transaction protocol recovery in order to guarantee

its correct execution.

While this focuses on supporting the 2PC protocol, logging

can be used just as effectively with other transaction

protocols. For every registered participant, the participants

relation stores the endpoint URL where the service can be

reached, allowing the coordinator to contact active

participants during crash recovery. Records in this relation

are uniquely identified by combining the transaction’s

unique identifier and the ordinal sequence in which the

participant was registered

D.Verification Module

An algorithm called taxonomy of transactional web services

is then used to verify the correctness of the fault handling

logic by following the ECA logic. In order to cope with

failures, participants must provide pre-commit behavior:

Once an operation is invoked and its positive vote is

communicated, the participant has tacitly promised its

ability to finalize the operation at a later time. A frequent

problem, however, is that most commercially-available

database systems either do not provide this behavior or

provide it only as part of separate programming interfaces 4

(e.g., as part of an XA interface). Instead, the default action

in case of site failures is to undo all uncommitted operations.

Therefore, fault tolerant services must also provide a

mechanism to restore provisional database changes present

as of the time of failure.

The long-running nature of this kind of transactions requires

participants to persist individual database operations as soon

as they are performed, even though they are logically

tentative. This behavior agrees with the open-nested

transaction model, in which the effects of sub transactions

are readily visible to others. If this were not done, the

concurrency penalty incurred by conventional data isolation

could not be tolerated by most applications.

E. Implementation module

The output of the implementation module is fault tolerant

composite services which can be deployed and executed.

Since committed operations by definition cannot be rolled

back, compensating operations are required to undo partial

work. Compensation consists of semantically canceling the

effects of an operation, as opposed to physically restoring

data back to a previous state (i.e., by means of a rollback).

Unfortunately, due to the effects of open-nested

transactions, compensation may lead to the undesirable need

to issue cascading aborts : a chain of related compensating

actions required to fix side effects created by the lack of

isolation. Given these implications and the nature of some

application domains, it is important to note that

compensation may not always be a feasible option.

II.CONCLUSION

Thus an integrated framework for specification, verification

and execution of fault tolerant composite services is

achieved at a minimal cost in mobile computing for

transactional web services. The entire structure is simple and

easy to maintain in even large environments.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

4

The fundamental properties of transactional business

processes cannot be guaranteed unless the intervening

participants offer minimum guarantees about their

reliability. Our work analyzed the fundamental fault

tolerance requirements for Web services in such a

transactional environment. Based on increasingly popular

specifications, we proposed a framework that leverages

existing logging and recovery techniques to enable failure

recovery. In this way, services become capable of restoring

critical state information and pending database activity,

allowing business processes to resume normal operation past

the point of failure.

III.FUTURE WORK

In the immediate future the system can be extended to

conform to additional reliability requirements that

transactions resulting from more complex business

processes impose on our framework. Such transactions are

likely to involve advanced transaction models, whose

implications might not yet be explicitly stated in the existing

specifications. Transactional business processes could also

improve their resilience by approaching failures using

autonomic recovery. By enabling transaction coordinators to

discover alternative participants, this option would greatly

expand the options currently available to the framework,

especially under permanent failure scenarios.

 REFERENCES

[1] A. Liu, Q. Li, L. Huang, M. Xiao, FACTS: A

Framework for Fault Tolerant Composition of Transactional

Web Services, IEEE Trans. on Services Computing

(PrePrints) (2009) 1–14.

[2] S. Bhiri, O. Perrin, C. Godart, Extending workflow

patterns with transactional dependencies to define reliable

composite web services, in: Proc. of the Advanced Int. Conf.

on Telecomm. and Int. Conf. on Internet and Web Appl. and

Services (AICT-ICIW), Washington, DC, USA, 2006, p.

145.

[3] J. El Haddad, M. Manouvrier, M. Rukoz, TQoS:

Transactional and QoS-aware selection algorithm for

automatic Web service composition, IEEE Trans. on

Services Comp.To appear. Note de recherche LAMSADE

ParisDauphine Univ. N

 [4] K. Vidyasankar, G. Vossen, A multilevel model for web

service composition, in: Proc. of the IEEE Int. Conf. on

Web Services (ICWS), 2004, pp. 462–469.

[5] N. B. Lakhal, T. Kobayashi, H. Yokota, FENECIA:

failure endurable nested-transaction based execution of

composite Web services with incorporated state analysis, in:

VLDB Journal, Vol. 18, 2009, pp. 1–56.

[6] J. E. Haddad, M. Manouvrier, M. Rukoz, A Hierarchical

Model for Transactional Web Service Composition in P2P

Networks, in: Proc. of the IEEE Int. Conf. on Web Service

(ICWS), 2007, pp. 346–353.

[7] A. Brogi, S. Corfini, R. Popescu, Semantics-based

composition-oriented discovery of web services, ACM

Trans. on Internet Technology 8 (4) (2008) 1–39.

[8] E. Blanco, Y. Cardinale, M.-E. Vidal, Aggregating

Functional and Non-Functional Properties to Identify

Service Compositions - In: IGI BOOK, Vol. 53, 2010,

accepted to be published.

[9] R. Hamadi, B. Benatallah, A petri net-based model for

web service composition, in: Proc. of the 14th Australasian

database Conf. (ADC), Darlinghurst, Australia, 2003, pp.

191–200.

[10] X. Deng, Z. Lin, W. Chen, R. Xiao, L. Fang, L. Li,

Modeling web service choreography and orchestration with

colored petri nets, in: Proc. of the 8th ACIS Int. Conf. on

Soft. Eng., Art. Intell., Networking and Parallel/Distributed

Comp., SNPD, Qingdao, China, 2007, pp. 838–843.

